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Abstract  —  A fast integrated CAD procedure for 

designing ir ises in Multi-Mode Coupled Cavity Fil ters is 
presented.  A reduced Generali zed Scattering Matr ix 
(GSM), obtained by using Adaptive Frequency Sampling for 
analysis, is combined with Aggressive Space Mapping for 
optimization of coupling structures.  The technique 
dramaticall y reduces the number of computational 
electromagnetic (CEM) analysis points needed for the 
design of an ir is, achieving a reduction factor of up to 50 for 
a design coupling 3 modes accross one ir is. 

I. INTRODUCTION 

Irises for multi -mode coupled cavity filters are 
generall y designed in two ways.  The first is based on 
Bethe’s small aperture theory where the coupling factor 
between two microwave cavities such as in figure 1 can 
be expressed as [1],[2]: 
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where pm and pe are the magnetic and electric 
polarisabilities of the aperture, Hpt the tangential 
magnetic field and Epn the normal electric field incident 
on the aperture.  This method is used extensively in 
literature [3], [4], but is based on approximations that 
cause inaccuracies in complex structures. 

The second method utilizes numerical methods to find 
resonant frequencies of propagating modes inside a 
coupled cavity structure.  For each propagating mode, two 
resonant frequencies are found from which the coupling 
factor can be derived [5]: 
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The Mode-Matching technique is well-suited to iris 
coupling problems and is widely used in coupled cavity 
filter design [6], [7].  The Generalized Scattering Matrix 
representation of a symmetrical coupled cavity structure 

is found and the resonant frequencies are determined by 
finding the roots of: 

G(f) =  Det [S+I] (3) 
where S is the GSM of the structure, I is the unity matrix 
and G is a complex-valued function of frequency. 
 

 

 
Fig. 1. Typical coupled cavity structure. 

 
Generally, the roots of (3) will yield the 2n resonant 

frequencies (where n is the number of propagating 
modes) required to determine the coupling coefficients, 
plus roots containing frequency of coupling information.  
For a triple-mode cavity the imaginary part of (3) could 
have as many as nine roots, most of which are very 
closely placed.  While this is a well-known method, little 
information is given on how the roots of (3) are obtained, 
or how different propagating modes are isolated to 
determine specific coupling coefficients.   
• This paper shows how a reduced GSM can be used to 
decrease the complexity of (3) and isolate specific modes 
by reducing the number of roots.  An equivalent network 
theory representation is also used to expand this method 
to the finding of coupling coefficients of cross-coupling, 
and coupling between dissimilar cavities. 

• Finding the roots of (3) for both the full and reduced 
GSM cases involves many EM-evaluations which could 
be very time-consuming.  In this proposed procedure, the 
number of EM-evaluations is greatly reduced by applying 
an Adaptive Sampling algorithm using Rational 
Interpolation [8] where (3) is approximated by a Thiele 
continued fraction, the roots of which can be found by 
any root finding algorithm. 

• Efficiency of optimization procedures for coupling 
iris structures is inversely proportional to the number of 
EM-evaluations performed.  The Least-Squares 
technique is well suited to such n-dimensional problems, 
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but optimization of a single coupling factor typicall y 
requires in excess of 30 coupling coeff icient evaluations, 
each requiring a large number of EM-evaluations.  A fast 
integrated CAD procedure is achieved by using 
Aggressive Space Mapping to reduce the number of EM-
evaluations required for optimization. 

II . COUPLING COEFFICIENT 

For the sake of clarity, this section will briefly discuss the 
standard procedure by which the GSM is used to calculate 
coupling coeff icients in section A, followed by the 
proposed improvements in section B and C. 

A. Resonant Frequencies of Iris Coupling Structures 

Since (3) is a complex valued function, both the roots 
of the real and the imaginary parts must be determined 
and the roots are:   

Re{ Det [S+I]} = 0 and Im{ Det [S+I]} = 0 (4) 

For a triple-mode coupling iris at 10GHz a typical 
response can be seen in figure 2. 
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Fig. 2.  (a). Typical Det[S+I] of 10GHz triple-mode iris in   
frequency band of interest. 

 (b). Det[S+I] of the same iris showing cluster of roots. 
 

In the region 9.9GHz to 10GHz both the real and the 
imaginary parts have 6 zeros.  Figure 2b clearly shows 
the proximity of roots.  EM-evaluations at a large number 
of frequency points is required to find such roots 

accurately.  The key to the positions of roots is found by 
examining the equivalent structure of 2 symmetrical 
cavities as can be seen in figure 3.  By placing a Perfect 
Electric Conductor (PEC) at the symmetry plane A-A, a 
resonant frequency fe that is close to the unperturbed 
resonant frequency of a single cavity can be found [8].  
Placing a Perfect Magnetic Conductor (PMC) at A-A 
results in a another lower resonant frequency fm.  These 
are the two natural frequencies of resonance of the 
structure for a particular propagating mode.  The 
coupling coeff icient can be given from equation (2): 
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Fig. 3.  Symmetrical Cavities 
 

Since the triple-mode cavity is designed to be resonant 
for 3 modes at a given frequency, the fe ’s will be close to 
that frequency.  For modes with small coupling 
coeff icients, fm will also be close to fe , forming a cluster 
of roots surrounding the design frequency. 

B. Finding and Identifying Resonant Frequencies 

The number of EM-evaluations in finding the roots of 
(3) can be greatly reduced by applying an Adaptive 
Sampling algorithm [8].  EM-evaluations are required 
only at support points determined by the Adaptive 
Sampling algorithm while Rational Interpolation is used 
to interpolate between support points.  The output of such 
an algorithm is in the form of a Thiele continued 
fraction, which can be converted to a quotient of 
polynomials (rational function).  For the specific 
complexity and frequency band of f igure 2, (3) was 
approximated with an estimated relative error of 10-10 
using only 20 support points (EM-evaluations).   

Rational functions are often used to approximate 
scattering matrices because of their abilit y to model both 
zeros and poles.  For the case of (3), only the zeros are of 
interest and only the roots of the numerator polynomial, 
which can be found with any root-finding algorithm, 
must be determined. 

Once all the required roots have been found, another 
EM-evaluation at each root frequency can be used to 
determine which propagating mode is at resonance.  
There should be 2 roots for each propagating mode with 
the roots corresponding to the natural resonant 
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frequencies of equation (5).  This method of isolating 
resonant frequencies of the modes has only been used for 
symmetrical cavities and is not valid for dissimilar 
cavities.  There is also no information regarding cross-
coupling between modes, which could be essential in a 
multi-mode environment. 

C. Reducing the Generalized Scattering Matrix 

An equivalent structure of two coupled cavities is 
given in figure 4, where each propagating mode on either 
side of the iris is treated as an independent resonator.  
Two modes are isolated by adding short circuits to their 
ports and terminating the remaining modes in their 
respective wave impedances.  The reduced scattering 
matrix for determining the coupling coefficient between 
modes a and b then becomes: 
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Fig. 4. Isolation and Termination of Modes for Reduced 

GSM 
 
Using the reduced GSM in (3) and the Adaptive 

Sampling algorithm with Rational Interpolation yields 
figure 5 with only 7 EM-evaluations.  It clearly shows the 
two natural resonance frequencies plus a third root of the 
imaginary part. 
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Fig. 5.  Det [Sreduced + I] of 10GHz triple-mode iris in      
frequency band of interest. 

From network theory it is well known that resonance 
occurs at zeros of the imaginary part of the input 
impedance.  For the equivalent network of figure 6a, a 
plot of Im{Zin} with frequency (figure 6b) shows the 
exact three zeros of figure 5.  The centre zero  of figure 
6b is known to correspond to the resonant frequency of 
the synchronously tuned resonators, i.e 

LC
o

1=ω  (7) 

The zeros of  Im{Det [Sreduced + I]} can therefore be 
used to determine the coupling coefficient and frequency 
of coupling of all propagating modes efficiently.  This 
method includes cross-coupling and is not limited to 
symmetrical  cavity structures. 
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Fig. 6. (a). Equivalent Network for coupled cavity structure. 
(b) Im{Zin} of equivalent network in (a). 

 
The effect of the reduced GSM on the accuracy of the 

roots when compared to the roots of the full GSM is 
minimal.  The roots used to determine the coupling 
coefficient show no change, but a small shift in the 
correct coupling frequency given by the full GSM, 
amounting to ≈0.1% has been found.  

III. OPTIMIZATION WITH AGGRESSIVE SPACE MAPPING 

Optimization of microwave components is generally 
very time consuming.  Figure 7 shows a typical iris used 
in triple-mode coupled cavity filters, along with some 
design variables.  Other variables include iris thickness 
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and cavity length.  Such n-dimensional optimization 
problems are well -suited to the Least-Squares 
optimization algorithm.  For optimization of an iris for a 
specific coupling coeff icient at a specific coupling 
frequency, more than 35 calculations of the coupling 
coefficient is required to obtain a maximum error of 
0.01%.  Together with an estimated 8 EM-evaluations 
per coupling coeff icient, this amounts to roughly 280 
EM-evaluations. 
 

 
Fig. 7. Typical Iris for Triple-Mode Filter 

 
Aggressive Space Mapping has been used successfull y 

to increase the computational eff iciency of EM-analysis 
and optimization [9].  The Space Mapping routine 
utili zes two equivalent descriptions of a microwave 
circuit.  The ‘coarse’ model fos(xos), with xos the model 
input parameters, is assumed to be simple, fast to 
evaluate but less accurate.  The ‘f ine’ model fem(xem), in 
this case the Mode-Matching EM-evaluation, is very 
accurate, but computationally very intensive.  The 
routine strives to find a map between the ‘coarse’ model 
and the ‘f ine’ model while performing the bulk of the 
CPU intensive optimization on the ‘coarse’ model.   

A prerequisite for the success of the Space Mapping 
routine is a good mapping to the ‘coarse’ model.  For this 
application it was found that an excellent ‘coarse’ model 
is supplied by Bethe’s small aperture theory, since the 
design variables effect both the coarse and the EM-model 
in the same way.   

Optimization in the coarse model space is performed 
by the Least-Squares algorithm, while the Adaptive 
Sampling algorithm is used to determine the EM-
coupling coeff icients eff iciently.  With this method, the 
same optimization example as above required only 4 
calculations of EM-coupling coeff icients to obtain a 
maximum error of 0.01%. 

 

IV. CONCLUSION 

An integrated CAD procedure for the eff icient design 
of irises in multi -mode coupled cavity filters is presented.  

A reduced GSM is shown to decrease the complexity of 
the standard procedure used to calculate coupling 
coeff icients in a multi -mode environment.  The number 
of EM-evaluations required to determine the coupling 
coeff icients is greatly reduced by applying an Adaptive 
Sampling algorithm using Rational Interpolation.  
Optimization time of iris design is further reduced by 
using Aggressive Space Mapping.  The integrated 
procedure presented is not restricted to symmetrical 
cavities, but can be used to analyze and design for cross-
coupling in dissimilar cavity structures. 
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